perm filename PLAN[EKL,SYS] blob
sn#817544 filedate 1986-05-27 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 The following is the file organization in the project:
C00005 00003 the file dependency is as follows:
C00008 ENDMK
C⊗;
;The following is the file organization in the project:
;There may be some changes of disposition w.r.t. the presentation in the paper
;G.Bellin and J.Ketonen, Experiments in Authomatic Theorem Proving
;but the same material covered.
;Here the filename is given:
;normal[ekl,sys] ;a normalizer of (propositional) expressions
;set[ekl,sys] ;rudiments of set theory
;natnum[ekl,sys] ;facts of natural numbers, involving <,',+ and *
;minus[ekl,sys] ;facts of natural numbers, involving ≤ and -
;sums[ekl,sys] ;finite sums and unions
;lispax[ekl,sys] ;axioms of LISP
;length[ekl,sys] ;length of lists
;nth[ekl,sys] ;the nth function and its relatives
;appl[ekl,sys] ;two ways of defining finite functions
;mult[ekl,sys] ;multiplicity and their properties
;pigeon[ekl,sys] ;the prigeon hole principle and two applications
;invima[ekl,sys] ;generalization (third application)
;assoc[ekl,sys] ;permutations are a group (using alist)
;permp[ekl,sys] ;permutations are a group (lists, using predicates)
;permf[ekl,sys] ;permutations are a group (lists, using functions)
;the file dependency is as follows:
; natnum normal lispax
; | | |
; |____________| |
; | |
; ↓ ↓
; minus set
; | |
; |___________________________|
; |
; ↓
; sums
; ↓
; length
; ↓
; nth
; ↓
; appl
; |
; _____________________|_____________________
; | | | |
; ↓ ↓ ↓ ↓
; mult assoc permp perf
; ↓
; pigeon
; ↓
; invima
;facts about reverse are given in the following order
; lispax
; |
; ↓
; reverse natnum
; | |
; |_________________|
; |
; ↓
; lthrev